Network Slicing

in 5G Networks

Muhammad Asif Khan, PhD Qatar Mobility Innovations Center (QMIC)

Topics

- Definition
- architecture
- Benefits
- Types
- Requirements
- Attributes
- Related Research Work

Network Slicing

 "A network slice is a logical network that provides specific network capabilities and network characteristics." (3GPP TS 23.501).

3GPP

3rd Generation Partnership Project (3GPP)

- the largest telecommunication standards body with 7 member organizations and >500 partners including device and chip makers, service providers, and research institutions. Develop standards in the form of "Releases".
- Notable standards: WCDMA, HSPA, LTE, LTE-Advanced.

International Telecommunication Union (ITU)

- A United Nations' entity
- Sets the main visions and goals, provide guidance in the form of "Recommendations".

12-Apr-23

Network Slicing

 "A network slice is a logical network that provides specific network capabilities and network characteristics." (3GPP TS 23.501).

Network slicing allows the operator to provide customized networks.

- Customized functionalities priority, charging, policy control, security, and mobility.
- Customized performance latency, mobility, availability, reliability and data rates.
- Restricted access MPS users, public safety users, corporate customers, roamers, or hosting an MVNO.
- Network slicing enables virtual pipelines for each data service to ensure QoS in 5G networks.

Network slicing

a single pipeline for data services (e.g., video streaming, Internet surfing and navigation).

virtual data pipelines for each data service.

Architecture

Two parties:

- NSP Network Slice Provider (can span across multiple domains (access, core, transport)
- NSC Network Slice Customer (dedicated and/or shared resources e.g., functionalities, storage, compute)

Four Roles:

- CSP Designs, builds and operates its communication services.
- NOP Designs, builds and operates its networks.
- NSC A CSP or CSC who uses Network Slice as a Service.
- NSP A CSP or NOP who provides Network Slice as a Service.

Why network slicing?

- Stringent KPI requirements in 6G networks (expected to debut by 2030)
 - 2-100 Gbps user data rate
 - 0.1 ms end-to-end latency
 - 10 million devices/km²
- Support for wide range of devices and services
 - IoT sensors traffic in a few bits, and network does not need overhead signaling
 - Streaming videos bulk of data with low latency requirements
 - Cloud applications e.g., robotics high bandwidth required on the uplink than downlink)

Benefits of network slicing

Multi-tenancy

 Sharing the common physical network infrastructure by multiple virtual networks (MVN) reduces capital expenditure.

Service/Performance Isolation

Network slices are constructed for different services to guarantee service requirements as per SLAs.

Flexibility

Slice creation, modification, and deletion can be done anytime to dynamically meet users' requirements.

Security

Isolate traffic to and from an organization to avoid data leakage.

Benefits of network slicing

A network slice is a public and isolated network.

Horizontal vs Vertical Slices

Horizontal network slicing

- resource sharing among different network nodes.
- over-the-air resource sharing across network nodes.
- enhance the capabilities of less capable network nodes.

Vertical network slicing

- resource sharing between different services and applications.
- enhance QoS.

3GPP Network Slice Types

- 3GPP defines five slice/service types (SSTs). (Release 17 Section 5.15)
 - 1. eMBB
 - 2. URLLC
 - 3. MIoT
 - 4. V2X
 - 5. HMTC
- Same set of features to different groups of users
- A single users can be part of one or more network slice instances simultaneously, regardless of if the user is 3GPP/N3GPP user.

Explaining "eMBB"

- **eMBB** enhanced Mobile BroadBand
- Typical data rates from 100Mbps up to 20Gbps per user
- 100Mbps data speed at the cell edge (where user receive a weak signal).
- Application: High definition (HD) videos, virtual reality (VR), and augmented reality (AR).

Download of 15GB HD video

Explaining "URLLC"

- URLLC Ultra Reliable and Low Latency Communications
- 1 millisecond latency (10ms in 4G)
- 99.99% reliability
- Applications: Remote robot control, smart health, autonomous vehicles, etc.

Explaining "mMTC"

- mMTC massive Machine Type Communications
- small packets, low-rate, uplink-centric transmission, tolerate high latency (~10s)
- 1 million IoT devices per Km² (10X more than 4G).
- Applications: smart buildings, smart HVAC, smart lighting, environmental monitoring, fire detection.

Explaining "V2X"

- V2X Vehicle-to-everything (e.g., V2V, V2I, V2P, V2N)
- A customized slice for V2X services
- Distance-based multicast communication
- Applications: cooperative traffic management, electronic toll system, road safety, UAV communication

12-Apr-23

Explaining "HMTC"

- HMTC High performance Machine-Type Communication
- Mixed requirements that do not fit into any of the particular slices e.g., large data (~eMBB), low latency (~URLLC), high density (~mMTC)
- delay <10ms, fixed position devices, density < 1000/km2, mission-critical support</p>
- Applications: industrial automation, public safety, remote robotic surgery

12-Apr-23

Network Slicing Requirements in 5G

The 5G system allows an MNOs (mobile network operators) to:

- create, modify, and delete a network slice.
- define and update the set of services and capabilities in the slice.
- assign a user to a slice, move it to another slice, and remove it from a slice.
- assign a user to a network slice with the needed services or to a default network slice.
- assign a user to more than one slices simultaneously in the same operator network.
- scale a network slice without impacting the "minimum available capacity" of other network slices.
- define a priority order between different multiple competing (for resources) network slices on the same network.
- restrict geographical boundaries for a slice.
- limit a user to only receiving service from an authorized slice.
- traffic and services in one network slice shall have no impact on traffic and services in other network slices in the same network.
- creation, modification, and deletion of a network slice shall have no or minimal impact on traffic and services in other network slices in the same network.

12-Apr-23

Slice Attributes Categories

Character attributes

- Performance related: Specify KPIs e.g., throughput, latency, etc.
- Function related: e.g., positioning, prediction
- Core & management related: how to control and manage the slice.

Scalability attributes

• e.g., number of UEs, area of service.

Exposure attributes

- KPI provide performance capabilities.
- API provide an API to NSC to access slice capabilities.

Slice attributes

- Availability amount of time the end-to-end communication service is delivered according to an agreed QoS.
- Area of service e.g., country, states, altitude (UAS)
- Maximum no. of UEs and UE density (devices per Km²)
- Delay tolerance applies to 3GPP access types.
- Deterministic communication FFS (reserved).
- Periodicity To support periodic communication E.g., temperature sensor (600s)
- Throughput Per slice aggregated data rate in downlink/uplink for all UEs in the slice.
- Throughput per UE
- Energy efficiency defined in 3GPP Release 17 TS 28.554 Section 6.7
- Group communication support Single cell P-MP, Broadcast, Multicast, Unicast
- Isolation level FFS (reserved).

12-Apr-23

Slice attributes

- Maximum packet size To achieve latency, supporting large no. of devices in URLLC and MIoT.
- Mission Critical Support priority of the network slice relative to others
- Performance Monitoring Capability for NSC and NOP to monitor KQIs and KPIs.
- Performance prediction Predictive QoS of services offered by NSP. (More by 5GAA and ITU-T FG ML5G).
- Positioning Support Geolocalization (via CID, E-CID, OTDOA, RF fingerprinting, AECID).
- Radio Spectrum Spectrum in which the NS should operate.
- Simultaneous slice usage if a UE can be part of this and another slice at the same time.
- Slice QoS applies to 3GPP 5QIs.
- Supported Device velocity Maximum supported at which the QoS can be achieved.
- V2X Communication support V2X or not? applies to 3GPP access type only
- NSSAA (NS authentication and authorization) devices need to be also authenticated and authorized?

Network Slicing Enablers

- Network slicing requires end-to-end implementation i.e., RAN to Core network (CN).
- Slicing at RAN:
 - resource allocation to users based in slice not on the physical cell e.g., admission control, load balancing
 - Slice on/off at each BS.
 - Network operation more service/traffic/user oriented instead of physical cell oriented.
- Slicing at CN Software Defined Networks (SDN) and Network Functions Virtualization (NFV).
 - SDN separate control and data planes and control plan can be programmed via APIs to deploy, operate and manage networks.
 - NFV virtualize network functions into software applications running on servers or VMs.
 - SDN+NFV virtualize the network elements and functions to enable network slicing.

Literature Review

Network slicing and edge computing

Network slicing and edge computing

- Sladana et al., Joint Wireless and Edge Computing Resource Management With Dynamic Network Slice Selection, IEEE/ACM Transactions on Networking, 2022
- Minimize the aggregate completion time of computational tasks across all WDs.
- Joint Slice Selection and Edge Resource Management (JSS-ERM)
- Inter-slice radio allocation policy AP resource shared by all slices.
- Intra-slice radio allocation policy Slice resources shared by WDs.
- The problem is Mixed Integer Program \rightarrow NP-hard
- Approximation → Choose Offloading Slice (COS) algorithm.

Fig. 1. An example of a slicing enabled MEC system that consists of N = 7 WDs, C = 2 ECs and A = 3 APs and S = 4 slices.

References

- Who & How: Making 5G NR Standards, Samsung White paper <u>https://images.samsung.com/is/content/samsung/p5/global/business/networks/insights/white-paper/who-and-how_making-5g-nr-standards.pdf</u>
- Ericsson and Arthur D. Little, Network slicing: A go-to-market guide to capture the high revenue potential, Ericson White paper

The END

Questions?